DARPA Robotic Challenge for Humanoid Robots


Table of Contents:

  • DARPA Robotic Challenge for Humanoid Robots
  • Atlas Robot

DARPA recently held its Virtual Robotic Challenge, where competing teams applied their own software to a simulated robot in an attempt to spur development of advanced robots that can assist in disaster relief and recovery efforts.


The DARPA Robotics Challenge (DRC) was created with a clear vision: spur development of advanced robots that can assist humans in mitigating and recovering from future natural and man-made disasters. Disasters evoke powerful, physical images of destruction, yet the first event of the DRC was a software competition carried out in a virtual environment that looked like an obstacle course set in a suburban area. That setting was the first proving ground for testing software that might control successful disaster response robots, and it was the world’s first view into the DARPA Robotics Challenge Simulator, an open-source platform that could revolutionize robotics development.

Disaster response robots require multiple layers of software to explore and interact with their environments, use tools, maintain balance and communicate with human operators. In the Virtual Robotics Challenge (VRC), competing teams applied software of their own design to a simulated robot in an attempt to complete a series of tasks that are prerequisites for more complex activities.

Twenty-six teams from eight countries qualified to compete in the VRC, which ran from June 17-21, 2013. DARPA had allocated resources for the six teams that did best, but in an interesting twist, good sportsmanship and generosity will allow members of the top nine teams, listed below, to move forward:

1.     Team IHMC, Institute for Human and Machine Cognition, Pensacola, Fla. (52 points)

2.     WPI Robotics Engineering C Squad (WRECS), Worcester Polytechnic Institute, Worcester, Mass. (39 points)

3.     MIT, Massachusetts Institute of Technology, Cambridge, Mass. (34 points)

4.     Team TRACLabs, TRACLabs, Inc., Webster, Texas (30 points)

5.     JPL / UCSB / Caltech, Jet Propulsion Laboratory, Pasadena, Calif. (29 points)

6.     TORC, TORC / TU Darmstadt / Virginia Tech, Blacksburg, Va. (27 points)

7.     Team K, Japan (25 points)

8.     TROOPER, Lockheed Martin, Cherry Hill, N.J. (24 points)

9.     Case Western University, Cleveland, Ohio (23 points)

The top six teams earned funding and an ATLAS robot from DARPA to compete in the DRC Trials in December 2013 (DARPA is also funding several other “Track A” teams to construct their own robot and compete in the Trials). The Trials are the second of three DRC events, and the first physical competition.

In a demonstration of good sportsmanship, Jet Propulsion Laboratory, which also has a DARPA-funded Track A effort with its own robot, decided to merge its two efforts and offer the bulk of the resources it earned in the VRC to other teams. DARPA split the freed resources between the next two teams:

·     The robot associated with the JPL win and some funding now goes to TROOPER (Lockheed Martin).

·     Additional funds are being allocated to a newly formed team of Team K and Case Western. That team, now known as HKU, will use an ATLAS robot generously donated to it by Hong Kong University to participate in the DRC Trials in December.

Thus, in total, seven teams with ATLAS robots and DARPA support will be going to the DRC Trials, where they will compete with other teams with their own robots.

VRC teams were evaluated based on task completion and effective operator control of the robots in five simulated runs for each of three tasks (15 total timed runs) that addressed robot perception, manipulation and locomotion. The tasks included: entering, driving and exiting a utility vehicle; walking across muddy, uneven and rubble-strewn terrain; and attaching a hose connector to a spigot, then turning a nearby valve. To simulate communications limitations in a disaster zone, the VRC imposed a round trip latency of 500 milliseconds on data transmission, and varied the total number of communications bits available in each run, from a high of 900 megabits down to 60 megabits.

To conduct the VRC, DARPA funded the Open Source Robotics Foundation to develop a cloud-based simulator that calculates and displays the physical and sensory behaviors of robots in a three-dimensional virtual space, in real time. The simulator allowed teams to send commands and receive data over the Internet to and from a simulated ATLAS robot—information very similar to what would be sent between a physical robot and its operator in the real world.

“The VRC and the DARPA Simulator allowed us to open the field for the DARPA Robotics Challenge beyond hardware to include experts in robotic software. Integrating both skill sets is vital to the long-term feasibility of robots for disaster response,” said Gill Pratt, DRC program manager. “The Virtual Robotics Challenge itself was also a great technical accomplishment, as we have now tested and provided an open-source simulation platform that has the potential to catalyze the robotics and electro-mechanical systems industries by lowering costs to create low-volume, highly complex systems.”

Discuss this Blog Entry 6

on Jan 8, 2014

I know what you mean, it is for sure a big challenge!

on Jan 14, 2014

I am not sure if this will work, but I will try it! www

on Feb 12, 2014

I'm so thankful this specific internet issue performs and your write-up actually aided everyone. Thank you for this.geo marketing

on Feb 17, 2014

Previously we have found multiple features from DRC (DARPA Robotic Challenge) especially on vehicles. Advanced feature includes latest vehicle technologies that help a vehicle owner to deal with emergency situations and avoid crashes injuries.

But the latest technology here we have found on robotics; these products are highly effective and essential in providing us beneficial services. In most of the countries we have found that robots are used to drive vehicles; in order to avoid accidents we used to take the help of robots to drive our cars. I hope in near future we have found some latest vehicle technologies to deal with common problems.

on Mar 1, 2014

Memang, ini mungkin tampak seperti sebuah kemenangan yang cukup tidak penting bagi pemilik usaha kecil. Namun, usaha dapat berpikir tentang pelaksanaan kampanye kesadaran publik di lokasi nyata dan online. Kemungkinan sebagian besar konsumen Software Point of Sales Online Omega POS Cloud tidak menyadari biaya yang terkait dengan penggunaan kartu kredit untuk membayar pembelian mereka, begitu halus menginformasikan pelanggan dan klien dari biaya adalah tempat yang sederhana untuk memulai. Jelas, Software Point of Sales Online Omega POS Cloud membutuhkan sedikit kebijaksanaan.


on Apr 4, 2014

I am glad to read about the DARPA Robotic Challenge for Humanoid Robots. I too agree that this will revolutionize robotics development. It will also have many industrial as well as medical applications. Well with your permission allow me to grab your rises feed to keep up to date with incoming post.
microsoft outlook help

Please or Register to post comments.

What's The Power Plant?

Sam Davis, Editor-in-Chief of Power Electronics Technology, blogs about power from the lowest levels up into the kilowatt region.

Blog Archive

Sponsored Introduction Continue on to (or wait seconds) ×